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Unsteady Aerodynamic and Aeroelastic
Calculations for Wings Using Euler Equations

Guru P. Guruswamy*
NASA Ames Research Center, Moffett Field, California

A procedure to solve simultaneously the Euler flow equations and modal structural equations of motion is
presented for computing aeroelastic responses of wings. The Euler flow equations are solved by a finite-differ-
ence scheme with dynamic grids. The coupled aeroelastic equations of motion are solved using the linear-accel-
eration method. The aeroelastic configuration adaptive dynamic grids are time-accurately generated using the
aeroelastically deformed shape of the wing. The unsteady flow calculations are validated with the experiment,
both for a semi-infinite wing and a wall-mounted cantilever rectangular wing. Aeroelastic responses are com-
puted for a rectangular wing using the modal data generated by the finite-element method. The robustness of
the present approach in computing unsteady flows and aeroelastic responses that are beyond the capability of
earlier approaches using potential equations are demonstrated.

Introduction

N the last two decades, there have been extensive develop-

ments in computational aerodynamics that constitute a ma-
jor part of the general area of computational fluid dynamics
(CFD).1? Such developments are essential to advance the un-
derstanding of the physics of complex flows, complement ex-
pensive wind-tunnel tests, and reduce the overall design cost of
an aircraft. The CFD capabilities have advanced closely in
phase with the improvements in computer resources. In gen-
eral, computational aerodynamics can be classified based on
the type of equations used and complexity of the configuration
considered. The problem can be further grouped into those
involving steady and unsteady flows.

Computational methods to analyze wing problems involving
steady flows have advanced to the level of using the Navier-
Stokes equations, and calculations on wing-body configura-
tions are in progress.’ In comparison, for unsteady flows asso-
ciated with moving components such as oscillating wings, the
most advanced codes use methods based on the potential-flow
theory.* Some of the reasons for the lag in the development of
unsteady methods when compared to steady methods are 1) the
complexity of physics associated with the movement of flexible
components, 2) the complexity in modeling the flow because of
the moving grids, and 3) the lack of development of fast,
time-accurate methods. One of the main reasons to develop
efficient unsteady methods is to understand the interaction of
the flows with moving structural components such as the
aeroelasticity of an aircraft.

Aecroelasticity plays an important role in the design and
development of an aircraft, particularly modern aircraft,
which tend to be flexible for high maneuverability. Several
phenomena that can be dangerous and limit the performance
of an aircraft occur because of the interaction of the flow with
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flexible components. For example, aircraft with highly swept
wings experience vortex-induced aeroelastic oscillations.>¢
Also, several undesirable aeroelastic phenomena occur in the
transonic range that are due to the presence and movement of
shock waves. Limited wind-tunnel and flight tests have shown
aeroelastically critical phenomena such as a low transonic flut-
ter speed. Because of the high cost and risk involved, it is not
practical to conduct extensive aeroelastic tests. An aeroelastic
wind-tunnel experiment is an order of magnitude more expen-
sive than a parallel experiment involving only aerodynamics.
By complementing the wind-tunnel experiments with the com-
putational techniques, the overall cost of the development of
an aircraft can be considerably reduced.

At present, the most advanced codes used for aeroelastic
analyses, such as XTRANS3S,” use the transonic small-pertur-
bation equation. Currently, ATRAN3S, the NASA-Ames ver-
sion of XTRAN3S, is being used for generic research in un-
steady aerodynamics and aeroelasticity of full-span, wing-
body configurations.* Although codes based on the potential-
flow theory give some useful results, they cannot be used for
cases involving complex flows. Now, given the availability of
new efficient numerical techniques and faster computers,? it is
time to consider Euler/Navier-Stokes equations for aeroelastic
applications.

Codes based on the Euler/Navier-Stokes equations have al-
ready been applied for practical and interesting problems in-
volving steady flows. Generic codes, such as ARC3D,° NASA
Ames Research Center’s three-dimensional Euler/Navier-
Stokes code, have been used for several scientific investiga-
tions. Such generic codes have resulted in useful codes such as
TNS, NASA-Ames’s Transonic Navier-Stokes code based on
zonal grids. TNS has successfully computed complex sepa-
rated flows on wings and wing-body configurations.?

In this paper, a computational method for computing un-
steady flows and aeroelastic responses of flexible wings is pre-
sented. This work is a part of a larger effort within the Applied
Computational Fluids Branch of NASA Ames Research Cen-
ter to develop a new code, ENSAERO, an efficient general-
purpose code to compute unsteady aerodynamics and aeroe-
lasticity of aircraft using the Euler/Navier-Stokes equations.
This new code is being designed in a modular fashion to adapt
several different numerical schemes suitable for accurate
aeroelastic computations. The candidate flow solvers are
based on schemes such as central-difference schemes with arti-
ficial viscosity,'? upwind schemes,!!:!2 etc., which have mostly
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been applied for steady flows and, in some cases, for unsteady
flows over stationary bodies. The basic coding of ENSAERO
can accommodate zonal grid techniques for efficient modeling
of full aircraft.? ENSAERO is also being designed in such a
way that instead of the modal equations of motion, finite
elements can be directly used for more complete modeling of
structures.

This paper describes the first version, ENSAERO version
1.0, which is based on the Euler equations coupled with the
modal structural equations of motion. Although computations
in this paper are done using the Euler equations coupled with
the modal structural equations of motion, all techniques devel-
oped in this work can be easily extended for computations
using the Navier-Stokes equations directly coupled with the
structural equations based on the finite-element method. The
procedure to solve the flow equations in ENSAERO version
1.0 is based on the diagonal algorithm form!?® of the Beam-
Warming central-difference scheme.!® For the first time, this
finite-difference scheme is adopted for aeroelastic computa-
tions using configuration adaptive dynamic grids. The coupled
flow and modal structural equations of motion are solved
using a simultaneous-integration technique based on the lin-
ear-acceleration technique. Dynamic grids that are adaptive to
the deforming shapes of the wing are generated using an alge-
braic grid-generation scheme. The unsteady flow computa-
tions are validated with the experimental data for both a semi-
infinite wing oscillating in pitching mode, and a wall-mounted
cantilever finite wing oscillating in the first bending mode. The
aeroelastic responses are computed for a rectangular wing us-
ing the modal data generated by the finite-element method and
they are correlated with the experiment. The robustness of the
present approach in computing aeroelastic responses that are
beyond the capability of earlier approaches using potential
flow equations is demonstrated.

Governing Aerodynamics Equations
and Approximations

The strong conservation law form of the Euler equations is
used for shock-capturing purposes. The equations in Cartesian
coordinates in nondimensional form!4 can be written as
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To enhance numerical accuracy and efficiency and to handle
boundary conditions more easily, the governing equations are
transformed from the Cartesian coordinates to general curvi-
linear coordinates using
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The resulting transformed equations can be written in non-
dimensional form as
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In Egs. (7), U, V, and W are contravariant velocity compo-
nents written without metric normalization. Here, the Carte-
sian derivatives are expanded in £, 9, { space via chain-rule
relations such as

U, = gxuf + Ny + fxur (8)

Finally, the metric terms are obtained from chain-rule expan-
sion of x, y,, etc., and solved for &,, £,, etc., to give
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The Cartesian velocity components u, v, and w are nondimen-
sionalized by a., (the freestream speed of sound); density p is
nondimensionalized by p; the total energy per unit volume e
is nondimensionalized by pw%, and the time ¢ is nondimen-
sionalized by c/a, where ¢ is the root chord. Pressure can be
found from the ideal gas law as
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and throughout 74 is the ratio of the specific heats.

Ex=JOR Yz,
& = J@pr—x.20),
&= Sy —yx),
$e = J(Vey— 25Vn)s
$y = J (2 —x:2,),
§o=J ey —yix,),

and

e = J @Y —YiZp)
Ny = J (X2 — XZg)
Ne = J()’sxr—xsy;)
§i= —xky —y:iEy —2.E,
M= —XMx —VNy — %M

g-t = "‘xrg‘x ~yfg‘y _zrg-z

(9a)
(9b)
%99
5d)
%e)
9

J7h = XeyaZs + XV + XYy — XYy — X¥iZs — XpZe (10)

Several numerical schemes have been developed to solve Eq.
(5). In this work, the algorithm developed by Beam and Warm-
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ing!® and the diagonal algorithm extension reported by Pul-
liam and Chaussee,' both based on implicit approximate fac-
torization, are used. Both algorithms were implemented in a
new code, ENSAEROQ, a general-purpose aeroelastic code
based on the Euler/Navier-Stokes equations and the modal
structural equations of motion with time-accurate aeroelastic
configuration adaptive grids. (Results presented in this paper
are from ENSAERO version 1.0, which uses the diagonal algo-
rithm to solve the Euler equations.)

The diagonal algorithm used in this paper is a simplified
version of the Beam-Warming scheme. In the diagonal algo-
rithm, the flux Jacobians are diagonalized so that the compu-
tational operation count is reduced by 50%. The diagonal
scheme is first-order accurate in time and yields time-accurate
shock calculations in a nonconservative mode. The scheme
used is briefly explained in the Appendix. More details of this
scheme can be found in Ref. 13.

Aeroelastic Equations of Motion

The governing aeroelastic equations of motion of a flexible
wing are solved by using the Rayleigh-Ritz method. In this
method, the resulting aeroelastic displacements at any time are
expressed as a function of a finite set of assumed modes. The
contribution of each assumed mode to the total motion is de-
rived by Lagrange’s equation. Furthermore, it is assumed that
the deformation of the continuous wing structure can be
represented by deflections at a set of discrete points. This
assumption facilitates the use of discrete structural data, such
as the modal vector, the modal stiffness matrix, and the modal
mass matrix. These can be generated from a finite-element
analysis or from experimental influence coefficient measure-
ments. In this study, the finite-element method is employed to
obtain the modal data.

It is assumed that the deformed shape of the wing can be
represented by a set of discrete displacements at selected
nodes. From the modal analysis, the displacement vector {d }
can be expressed as

{d} =Nllq) an

where [y] is the modal matrix and {q} is the generalized dis-
placement vector. The final matrix form of the aeroelastic
equations of motion is

M1{g]) + [G1{g} + [K]{q]} = {F} (12)

where [M], [G], and [K] are modal mass, damping, and stiff-
ness matrices, respectively. The {F} is the aerodynamic force
vector defined as (2)p UL[¥]17[A1{AC, } and [A] is the diago-
nal area matrix of the aerodynamic control points.

The aeroelastic equation of motion (12) is solved by a nu-
merical integration technique based on the linear-acceleration
method.!® Assuming a linear variation of the acceleration, the
velocities and displacements at the end of a time interval ¢ can
be derived as follows:
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At Ar? -1
[D] = <[M] t5 (G]+ ra [K]>

A
v=1{q}ia+ <‘2_t>[q}t—m

N
W= (g)a + A1) + <T’>mw

These equations can also be derived by using the second-or-
der-accurate central-difference scheme. Since Egs. (13) are ex-
plicit in time, the computational time-step size is restricted by
stability considerations. However, the time-step size required
to solve the aerodynamic equation [Eq. (5)] accurately is al-
ways far less than the time-step size required to obtain stable
and accurate solution using the preceding numerical-integra-
tion scheme.!* To obtain physically meaningful time-accurate
solutions, it is necessary to use the same time-step size in
integrating Eq. (5) and Eq. (12). Also, the preceding scheme is
numerically nondissipative and does not lead to any nonphys-
ical aeroelastic phenomenon.

The step-by-step integration procedure for obtaining the
aeroelastic response was performed as follows. Assuming that
freestream conditions and wing-surface boundary conditions
were obtained from a set of selected starting values of the
generalized displacement, velocity, and acceleration vectors,
the generalized aerodynamic force vector {F(¢)} at time ¢ was
computed by solving Eq. (5). Using this aerodynamic vector,
the generalized displacement, velocity, and acceleration vec-
tors for the time level ¢ are calculated by Eq. (12). From the
generalized coordinates computed at the time level ¢, the new
boundary conditions on the surface of the wing are computed.
With these new boundary conditions, the aerodynamic vector
{F(¢)} at the next time level, r + At, is computed using Eq. (5).
This process is repeated every time step to advance the aerody-
namic and structural equations of motion forward in time until
the required response is obtained.

Aeroelastic Configuration Adaptive Grids

One of the major complexities in computational aerody-
namics using the Euler equations lies in the area of grid gener-
ation. For the case of steady flows, advanced techniques such
as zonal grids? are currently being used. Grid-generation tech-
niques for aeroelastic calculations that involve moving compo-
nents are in an early stage of development. The effects of the
aeroelastic configuration adaptive dynamic grids on the stabil-
ity and accuracy of the numerical schemes are yet to be studied
in detail.

This work developed an analytical grid-generation technique
for aeroelastic applications. This scheme satisfies the general
requirements of a grid required for implicit finite-difference
schemes used in the present analysis.!%!* Some of the require-
ments are 1) grid lines intersect normal to the wing surface in
the chordwise direction, 2) a smooth stretching of grid cells
away from the wing surface, 3) outer boundaries located far
away from the wing to minimize the effect of boundary reflec-
tions, and 4) a grid that adapts to the deformed wing position
at each time step. The type of grid used is C-H grid. The grid
is generated at every time step based on the aeroelastic position
of the wing computed using Eq. (12) as follows.

At the end of every time step, the deformed shape of the
wing is computed using Eq. (11). The £ and 5 grid distributions
on the grid surface corresponding to the wing surface ({ grid
index = 1) are obtained from previously assumed distribu-
tions. These distributions are selected to satisfy the general
requirements of a grid for accurate computations. In this
work, the grid in the ¢ direction is selected such that the grid
spacing is fine on the wing and it stretches exponentially to
outer boundaries. The grid near the nose is finer than the rest
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of the wing in order to model the nose geometry accurately. In
the spanwise direction, a uniformly distributed grid spacing is
used on the wing. In order to model the wing tip, a finer grid
spacing is used near the wing tip. Away from the wing tip, the
n grid spacing stretches exponentially. The ¢ grid spacing is
computed every time step using the deformed shape of the
wing computed by using Eq. (11). The ¢ grid lines start normal
to the surface in the chordwise directions and their spacing
stretches exponentially to a fixed outer boundary. In order to
restrain the outer boundaries from moving, the grid is sheared
in the { direction. The metrics required in the computational
domain are computed using the following relations:

gt = _XTEX ~.yrgy - ZTEZ (14&)
M= —XMx —.y/r,y — Mz (14b)
= —X:{x —yrg‘y _zrg‘z (14C)

The grid velocities x,, y,, and z, required in Egs. (14) are
computed using the grids at new and old time levels. This
configuration adaptive grid-generation scheme is incorporated
in ENSAERO. Figures 1a and 1b show grids around a wing
section in a x-z plane at 50% span for two positions of a
rectangular wing. Similarly, Fig. 2a and 2b show grids in a x-z
plane at the 50% chord axis for two positions of a rectangular
wing in bending motion. Both Figs. 1 and 2 show the ability of
the grid to conform to the deforming wing surface.

Results

Aerodynamic Computations for a Semi-infinite Wing

In this section, steady and unsteady computations are made
to validate the accuracy and to demonstrate the capability of
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Fig. 1 Chordwise view of grid in x-z plane at 50% semispan location:
a) initial position, and b) deformed position.
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the present flow computations. The unsteady results shown are
from the computations made for wings undergoing prescribed
forced motions.

Time accuracy is an essential requirement for aeroelastic
computations. Numerical schemes used for flow calculations
in aeroelasticity must guarantee the correct calculation of am-
plitude and phase of unsteady pressures. In order to verify the
time accuracy of the flow calculations, a semi-infinite wing
with an NACA 64A010 airfoil section was selected. This case
was selected to assess the accuracy of the computed results
against the available two-dimensional experimental data.!

For the semi-infinite rectangular wing configuration consid-
ered, a C-H type grid with 110 points in the chordwise direc-
tion, 20 points in the spanwise direction, and 20 points in the
normal direction, was used. Using this dynamic grid which
adapts according to the airfoil position as shown in Fig. 1,
several unsteady calculations were made for the semi-infinite
wing. All computations were made at a transonic Mach num-
ber of 0.8 for a reduced frequency of 0.1 (based on the full
chord) when the wing was oscillating sinusoidally in pitch
mode with an amplitude of 1.03 deg about a mean angle of
attack of —0.21 deg.

In order to study the accuracy and stability of the scheme,
inviscid computations using the Euler equation [Eq. (5)] were
made with 720, 1080, and 1440 time steps/cycle. The computa-
tions were started with freestream flow conditions as initial
data, and continued for three cycles of wing oscillation to
obtain a periodic solution. A Fourier analysis was carried out
on the third cycle of the solution to obtain real and imaginary
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Fig.2 Spanwise view of grid in y-z plane at 50% chord location:
a) initial position, and b) deformed position.
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Fig. 3 Real and imaginary components of unsteady lower surface
pressures at midspan of the semi-infinite wing.

parts of unsteady harmonic pressure history and these are
shown in Fig. 3 for the three computational time-step sizes
considered. Also shown in Fig. 3 are the experimental mea-
surements of Ref. 16. The results obtained using 1080 and 1440
time steps/cycle are essentially identical, and they differ
slightly from the result obtained using 720 time steps/cycle. It
is also noted that the Fourier results from the second cycle
were identical to those from the third cycle. From these obser-
vations, it can be stated that the present scheme required three
cyles of oscillations with 1080 time steps/cycle, during which
time the unsteady transients disappeared and a periodic re-
sponse was obtained. Good comparisons with the experiment
illustrates that the present procedure of solving Eq. (5) using a
dynamic grid gives accurate results.

In Fig. 4, the results from the Euler calculations are com-
pared with those from ATRAN2,! a two-dimensional un-
steady code based on the classical transonic small-perturbation
theory. The Euler results compare better with the experiment
than the results from ATRAN2. This illustrates the inade-
quacy of the potential flow theory for a moderately thick
NACA 64A010 airfoil even at a small angle of attack of —0.21
deg. This inadequacy of the potential flow theory is because of
the lack of accurate modeling of entropy and vorticity. In
order to illustrate the capability of the Euler equations further,
unsteady calculations were made at 4.0-deg mean angle of
attack and the results are shown in Fig. 5. It is noted that these
results cannot be computed using the classical potential flow
equations because of numerical instability caused by a strong
shock wave that lies close to the trailing edge.

Aerodynamic Computations for a Rectangular Wing

In order to validate the present computations for a finite
wing undergoing a prescribed forced motion, a rectangular
wing of aspect ratio 3 with a 5% thick circular arc section was
selected. For this wing, steady and unsteady experimental data
are given in Ref. 18. The unsteady pressures were measured
when the wing was undergoing a forced sinusoidal motion in
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Fig. 4 Comparison of unsteady pressures between Euler and poten-
tial flow calculations.
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Fig. 5 Comparison of unsteady pressures between small and medium
angles of attack from Euler flow calculations.

its first bending mode. The measured modal data from Ref. 18
were used in the present computations. All computations were
made with a grid of size 110 x 20 x 20.

Figure 6 shows computed and experimental steady pressure
distributions at four spanwise stations for subsonic flow
(M =0.70 and a=5.0 deg). Similarly, Fig. 7 shows computed
and experimental steady ‘pressure distributions at four span
stations for transonic flow (M =0.90 and «=0.0 deg). For
both cases, upper and lower surface results compare well with
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the experiment. The discrepancies seen near the nose for the
subsonic case in Fig. 6 are because of the lack of grid resolu-
tion near the nose. A grid finer than the one used in this
analysis is required to improve the computed results. The dis-
crepancies seen at the root span station in Fig. 7 for the tran-
sonic flow are because of viscous effects from the wall which
cannot be modeled with the Euler equations used in the present
analysis. An accurate modeling of viscous effects requires the
use of the Navier-Stokes equation.

The unsteady aerodynamic pressures were computed by
forcing the wing to undergo a sinusoidal modal motion and
integrating the aerodynamic equation of motion in time. The
modal motion simulated in the code was the first bending
mode that was used in the experiment. For all of the cases
studied here, it was found that about three cyles of motion
with 1440 time steps/cyle were sufficient to obtain a periodic
aerodynamic response. Periodicity was tested by comparing
the responses between the second and third cycles. The magni-
tudes and phase angles of the unsteady differential pressure
coefficients (AC, = Cpl — Cpu) were computed using the third
cycle results.

In Fig. 8, the magnitudes and phase angles of the unsteady
differential pressures obtained by ENSAERO and the experi-
ment are shown for four spanwise stations for M =0.70 and
k =0.34. In the same figure, results obtained by the kernel
function method!® are also shown. The phase-angle results
from the experiment are not shown since those results at this
Mach number were corrupted by the wind-tunnel resonance as
reported in Ref. 18. In general, the three sets of curves agree
well. The agreement of the magnitudes is better than that of

RECTANGULAR WING
AR = 3.0, 5% CIRCULAR ARC SECTION
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Fig. 6 Comparison of steady surface pressures between computation
and experiment at M =0.70 and «=5.0 deg.

AIAA JOURNAL

phase angles. These unsteady computations illustrate the accu-
racy of the present computations using a dynamic grid for a
finite wing.

In Fig. 9, the magnitudes and phase angles of the unsteady
differential pressures obtained by ENSAERO and the experi-
ment are shown for four span stations for transonic flow
(M =0.90 and k =0.26). In general, the two sets of results
compare fairly well except near the root. Peaks in pressure
differences occur at almost the same locations for both
ENSAERO and the experiment. The computed results show
the characteristic jump in the transonic phase angle behind the
shock wave shown by several experiments. Correct prediction
of this characteristic verifies the time accuracy of the present
computations. The computed pressure differences near the
shock are more pronounced than the measured data. This
discrepancy may be attributed to the viscous effects that are
not accounted for in the Buler equations. These discrepancies
are magnified near the root because of the additional effect of
the wall boundary layer. The computed results show some
oscillations, particularly in the phase near the root. Numerical
experiments performed during the present study revealed that
these oscillations can be suppressed by using finer grid spac-
ings.

Aeroelastic Computations for a Rectangular Wing

This section shows aeroelastic results computed from the
coupled flow and structural equations of motion, Eq. (12).
Aeroelastic-response analyses are conducted for a uniform
rectangular wing of aspect ratio 5.0 with a 6% thick parabolic
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Fig. 7 Comparison of steady surface pressures between computation
and experiment at M =0.90 and a=0.0 deg.
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Fig. 8 Comparison of unsteady differential pressures between theo-
ries and experiment at M =0.70 and o =0.0 deg.

arc airfoil section. For this wing, flutter speeds at various flow
conditions were measured in a wind tunnel and results are
reported in Ref. 19. The length and the width of the model are
4.56 and 11.5 in., respectively.

Aeroelastic responses were computed by using the first five
normal modes of the wing. The modal data required in the
analysis were computed by modeling the wing with a 16-de-
gree-of-freedom rectangular finite element.?’ Figure 10 shows
the mode shapes and frequencies of the first five normal modes
for the wing. This modal data compares well with the mea-
sured data.!® For example, the computed values of the natural
frequencies of the first bending and torsional modes are 13.21
and 67.32 Hz, respectively. The corresponding measured val-
ues are 14.29 and 80.40 Hz, respectively. The computed values
were obtained using the structural properties of the aluminum-
alloy flat-plate insert in the model. The influence of the light-
weight covering used for the wind-tunnel model to provide the
thickness was not accounted for in the computations due to
lack of available data. This might have caused the discrepan-
cies between the computed and measured frequencies.

Using the normal modal data shown in Fig. 10, aeroelastic
responses were computed by simultaneously integrating the
flow equation [Eq. (5)] and the aeroelastic equation [Eq. (12)]
in ENSAERO. The response calculations were started with
initial modal disturbances in the first and second modes. To
simulate these disturbances, the values for the first two gener-
alized displacements, g(1) and g(2), were initially set to 0.2.
The other values of {g} were initially set to zero. Freestream
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Fig. 9 Comparison of unsteady differential pressures between com-
puted and experiment at M =0.90 and « =0.0 deg.

conditions were used as initial conditions for the flow. An
alternate method is to start from the converged steady-state
solution. From numerical experiments of this work, it is found
that numerical transients, those that are present at the start of
the integration scheme, do not influence the aeroelastic re-
sponses. Identical solutions were obtained by both methods
and all of the cases reported here are obtained using freestream
conditions.

Aeroelastic responses were computed at M =0.715 for var-
ious pressures. Figure 11 shows the stable, almost neutrally
stable, and unstable responses of the first three coupled modes
for dynamic pressures of 1.2, 1.4, and 1.6 psi, respectively.
The response results are shown from the beginning of the
computation. As observed from the results of the forced mo-
tions shown in the previous section, most of the numerical
transients die out after the first cycle. Therefore, it was as-
sumed for the results shown in Fig. 11 that the numerical
transients die out after about 0.075 s, which corresponds to the
physical time of completion of the first cycle of the first nor-
mal mode. The response of the first coupled mode in Fig. 11
is dominated by the first normal mode. The responses of the
second and third coupled modes show predominantly the first
normal mode superimposed with higher normal modes. After
about 0.2 s the effect of the higher modes reduces.

The responses shown in Fig. 11 for the dynamic pressure of
1.4 psi are almost neutrally stable. It is noted that the experi-
mental dynamic pressure measured at the neutrally stable con-
dition for this case was 1.396 psi.!? The corresponding value
obtained by using ATRAN3S,* a code based on the transonic
small-disturbance theory, is 1.56 psi. From this result, it can
be stated that it is important to use the more exact equations
such as the exact inviscid Euler equations to compute aeroelas-
tic responses.

Computer Requirements

All of the preceding computations were made on the CRAY-
XMP48 computer available at NASA Ames Research Center.
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Fig. 11 Aecroelastic responses of the rectangular wing at A =0.715 at
three dynamic pressures.

For a grid size of 110 x 20 x 20, the total memory required was
2.5 MW and CPU time per time step required was 1.5 s.
Version 1.0 of ENSAERO runs at about 60 MFLOPS (million
floating-point operations per second).

Conclusions

The following conclusions can be made based on the present
work.

1) A time-accurate numerical procedure for computing the
unsteady flows and aeroelastic responses of flexible wings us-
ing the Euler equations with configuration adaptive dynamic
grids has been developed.

2) The unsteady results computed using dynamic grids com-
pare well with the experiment.

3) Coupling of the Euler equations with the modal struc-
tural equations of motion is demonstrated for a rectangular
wing.

4) The need for using more exact equations such as the exact
inviscid Euler equations is demonstrated both for aerodynamic
and aeroelastic computations.

5) Aeroelastic computations involving vortices need to be
computed using finer grids in order to study possible aeroelas-
tic instabilities due to these vortices.

6) This technique needs to be developed further using the
Navier-Stokes equations for computing cases involving sepa-
rated flows.

Appendix

Aerodynamic Solution Procedure

The basic Beam-Warming algorithm is first- or second-order
accurate in time and second- or fourth-order accurate in space.
The equations are factored (spatially split) which, for a given
time iteration, reduces the process to three one-dimensional
problems. Because of the second-order central-difference op-
erators employed, the algorithm produces block tridiagona.
systems for each spatial dimension. The stability and accuracy
of the numerical algorithm is described by Beam and Warm-
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ing.!0 According to the linear analysis, the numerical scheme is
unconditionally stable in two dimensions. In actual practice,
time-step limits are encountered because of the nonlinear na-
ture of the equations. However, this limitation is much less
stringent than comparable explicit schemes. In three dimen-
sions, the algorithm is unconditionally unstable, but stability is
maintained by the addition of artificial dissipation terms.

The finite-difference algorithm of Beam and Warming ap-
plied to Eq. (5) results in the following approximate factoriza-
tion:

(1+h8, 27+ DP) (1+ho,B"+ D)
X (1 +hé.Cn+ D}z)) AQ" = R"
— —Ar (8,7 +8,F"+5,G") — DOQr (Al

where 6 is the central-difference operator and A and V are
forward- and backward-difference operators. Indices denoting
spatial location are suppressed, and h = A7 corresponds to
first-order time-accurate Euler implicit and 4 =A7/2 to sec-
ond-order time-accurate trapezoidal rules. The D{?, D{?, and
D are the implicit smoothing operators and D{* is the ex-
plicit smoothing operator.

The Jacobian matrices A", B", and C” are obtained by lin-
earizing the flux vectors E”, F, and G” in time such that

Erel = Bn g A0 Qr = QM) + 0(AT) (A2a)
Frel = froy By Qe+t — O + O(ATY) (A2b)
Gl = Gn + OO — O + O(AT?) (A20)

where indices denoting spatial location are suppressed again
and
. OdFE ~ OF .
A‘aQ’ B_BQ’ C‘aQ (A3)
are the flux Jacobian matrices.

Block tridiagonal-matrix inversions constitute the major
portion of numerical work associated with the standard Beam-
Warming algorithm. Equation (5) is a coupled set of five equa-
tions and thereby produces a (5 X 5) block-tridiagonal struc-
ture for the implicit operators of Eg. (Al). The diagonal
version of the standard algorithm due to Pulliam and Chaus-
see'? overcomes this difficulty. In this algorithm, rather than
inverting block-tridiagonal matrices in each direction, scalar
pentadiagonal matrices are inverted. This is computationally
more efficient.

The Jacobian matrices A, B, and € have a set of eigenvalues
and a complete set of distinct eigenvectors. Similarity transfor-
mations can be used to diagonalize A, B, and C:

.Zl = TsAng_],

B=TA, T, C=TAT' (A4

where
Re=D[UUUU+c@+8+8),
U—cgt+8+£)" (ASa)
Ry =D[V.V.V,V +e@d +n} +n2)"%,
V=l +13+)"] (Asb)
A=D [W,W,W,W+c(§§ + 24+ )%,
W—c(@+ G+ "] (As0)
where c is the speed of sound (¢?=~p/p).

The similarity transformation matrices T, 7,, and T, and
their inverse matrices are given in Ref. 13. Relations exist
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between T, T,, and T; of the form
N=17'T,, N'=7;'T, P=T,'T,
Pl= T{’T,, (A6)

After applying the similarity transformations of Egs. (A4) and
identities of Eq. (A6), and exchanging the smoothing opera-
tors with new ones, the diagonal form of the standard al-
gorithm reads

Ti(I + héA;—hD; | )N + hé,A,— hD; |,)

X P(I+h8Ay—hD; | )T 'AQ" = R” (A7)

This diagonal scheme reduces the Beam-Warming scheme
to, at most, first-order in time and also gives time-accurate
shock calculations in a nonconservative mode.
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